83 research outputs found

    Effect of flow choking on experimental average friction factor of gas microflows

    Get PDF
    Pressure drop experiments are performed for a rectangular channel having a hydraulic diameter of 295\u3bcm (w=360\u3bcm, h=250\u3bcm) up to Re 16000. A validated numerical model is used to gain insight of flow physics inside employed microchannel test assembly. Comparison of numerical and experimentally calculated flow properties considering two different data reduction methodologies show that adiabatic treatment of gas results in a better agreement of average friction factor values with conventional theory in turbulent regime. Minor loss coefficients available in literature are not valid for microflows as they change from one assembly to other. This necessitates an estimation of minor loss coefficients as a priori which can be established using a validated numerical model of the experimental test rig. However, such a treatment of minor loss coefficients adds an additional step of establishing a well posed numerical model before each experiment and hence is not convenient at all from experimentalist point of view. An adiabatic treatment of the gas along the length of the channel coupled with isentropic flow assumption from manifold to microchannel inlet results in a self-sustained experimental data reduction and therefore should be followed in consequent gas flow studies. Furthermore, assumption of perfect expansion and wrong estimation of average gas temperature between inlet and outlet results in an apparent increase of experimental friction factor in highly turbulent choked regime. Literature has been divided into two main approaches for establishing experimental average frictional characteristics in micro channels (MCs). When a total pressure drop and inlet temperature are available, a classical methodology is to invoke minor loss coefficients and subtract pressure losses associated to inlet/outlet manifold. Resulting pressure difference is then utilized along with measured temperature at manifold inlet to calculate average isothermal fanning friction factor. Such a treatment is quite realistic when an incompressible liquid working fluid is utilized but has been applied to compressible flows as well in the past [1]. In reality, a gas microflow does not stay isothermal and shows a strong temperature decrease close to outlet for adiabatic walls. For an adiabatic flow, temperature estimation at MC outlet can be done using a quadratic equation proposed by [2]. Data reduction methodology where minor losses are utilized along with the temperature estimation at outlet, is referred to as M1 in the subsequent text. An alternative methodology (M2), originally proposed by [2] is to estimate MC inlet flow properties by assuming isentropic flow between inlet manifold and MC inlet. This automatically caters for a reduction in MC inlet pressure and hence inlet coefficient is not required. Main aim of current study is to investigate underlying differences and their effects on experimental average friction factor between above stated methodologies in the presence of flow choking. An establishment of a unique methodology for future compressible gas experimentalists is also intended

    Experimental measurements of thermal-hydraulic performance of aluminum-foam water-to-air heat exchangers for a HVAC application

    Get PDF
    In this paper, thermal and hydraulic performance of in-house made prototypes of water-to-air heat exchangers are experimentally investigated and compared to those of a compact heat exchanger, used in a commercial fan coil. The prototypes are built replacing the fins with aluminum foam surfaces characterized by a large porosity, higher than 96%. In order to evaluate the performance of the foam-based heat exchangers in a real-scale application, the geometry of the prototypes was based on that of the reference model and, moreover, experimental tests were performed placing the heat exchangers within the commercial cabinet, under the same fan power. Different bonding techniques were also tested to couple metal foams to copper tubes. Results show that similar hydraulic performance can be obtained with the foam-based heat exchangers, if compared to the commercial device. However, the large foam porosity accounts for a lower value of the surface-to-volume ratio of the aluminum foam media, thus yielding a strong penalty, up to 60%, of the heat transfer rate with respect to that of the conventional finned surface. Moreover, experimental results highlight how the bonding technique and the foam packaging have a strong influence on the contact thermal resistance and, consequently, on the overall heat transfer coefficient. Epoxy bonding allows to increase the thermal performance of the heat exchanger, if compared to press fitting, between 15% and 110%. In conclusion, results presented in this paper suggest that metal foams can be considered as a potential alternative to fins in water-to-air heat exchangers only if the foam tube bonding is obtained by welding or brazing

    Data reduction of average friction factor of gas flow through adiabatic micro-channels

    Get PDF
    This paper presents data reduction of average friction factor of gas flow through adiabatic microchannels. In the case of micro-channel gas flow at high speed, the large expansion occurs near the outlet and the pressure gradient along the length is not constant with a significant increase near the outlet. This results in flow acceleration and a decrease in gas temperature. Therefore the friction factor of microchannel gas flow should be obtained with measuring both the pressure and temperature. The data reductions on friction factors were carried out under the assumption of isothermal flow for numerous experimental and numerical studies since temperature measurement of micro-channel gas flow at high speed is quite difficult due to the measurement limitations. In the previous study, it was found that the gas temperature can be determined by the pressure under the assumption of one dimensional flow in an adiabatic channel (Fanno flow). Therefore in the present study data reduction to estimate friction factors between two relatively distant points considering the effect of a decrease in temperature is introduced with the temperature determined by the measured pressure at a specific location. The Friction factors obtained by using the present data reduction are examined with the available literature and the results are compared with empirical correlations on Moody chart

    Data reduction of average friction factor of gaseous flow in micro-channels with adiabatic wall

    Get PDF
    This study focuses on data reduction of average friction factor of gaseous flow through microchannels. In the case of microchannel gas flow at high speed, the large expansion occurs near the outlet and the pressure gradient along the length is not constant and increases near the outlet. This results in flow acceleration and a decease in bulk temperature. Therefore both pressure and temperature are required to obtain the friction factor of the microchannel gas flow. In the past data reduction of many experiments, the friction factors have been obtained under the assumption of isothermal flow since temperature measurement of compressible flow in micro-channels is quite difficult due to the experimental technique limitations. Kawashima and Asako [1] found that the gas temperature can be determined by the pressure under the assumption of one dimensional flow in an adiabatic channel (Fanno flow) to obtain the friction factor considering the effect of a decrease in gas temperature
    • …
    corecore